martes, 3 de marzo de 2015

Polarización electromagnética

La polarización electromagnética es una propiedad de las ondas que pueden oscilar con más de una orientación. Esto se refiere normalmente a las llamadas ondas transversales, en particular se suele hablar de las ondas electromagnéticas, aunque también se puede dar en otras ondas transversales. Por otra parte, las ondas de sonido en un gas o líquido son ondas exclusivamente longitudinales en la que la oscilación es siempre en la dirección de la onda; por lo que no se habla de polarización en este tipo de ondas.
En una onda electromagnética, tanto el campo eléctrico y el campo magnético son oscilante pero en diferentes direcciones;ambas perpendiculares ente si y perpendicular a la dirección de propagación de la onda; por convención, el plano de polarización de la luz se refiere a la polarización del campo eléctrico.

Campo eléctrico y campo magnético de una onda electromagnética

Una onda electromagnética es una onda transversal compuesta por un campo eléctrico y un campo magnético simultáneamente. Ambos campos oscilan perpendicularmente entre sí; las ecuaciones de Maxwell modelan este comportamiento.
Habitualmente se decide por convenio que para el estudio de la polarización electromagnética se atienda exclusivamente al campo eléctrico, ignorando el campo magnético, ya que el vector de campo magnético puede obtenerse a partir del vector de campo eléctrico, pues es perpendicular y proporcional a él.

Tipos de polarización

La forma trazada sobre un plano fijo por un vector de campo eléctrico de una onda plana que pasa sobre él es una curva de Lissajous y puede utilizarse para describir el tipo de polarización de la onda. Las siguientes figuras muestran algunos ejemplos de la variación del vector de campo eléctrico (azul) con el tiempo (el eje vertical), con sus componentes X e Y (roja/izquierda y verde/derecha), y la trayectoria trazada por la punta del vector en el plano (púrpura). Cada uno de los tres ejemplos corresponde a un tipo de polarización.
Polarisation rectiligne.gifPolarisation circulaire.gifPolarisation elliptique.gif
Diagrama de polarización lineal
Diagrama de polarización circular
Diagrama de polarización elíptica
LinealCircularElíptica
En la figura de la izquierda, la polarización es lineal y la oscilación del plano perpendicular a la dirección de propagación se produce a lo largo de una línea recta. Se puede representar cada oscilación descomponiéndola en dos ejes X e Y. La polarización lineal se produce cuando ambas componentes están en fase (con un ángulo de desfase nulo, cuando ambas componentes alcanzan sus máximos y mínimos simultáneamente) o en contrafase (con un ángulo de desfase de 180º, cuando cada una de las componentes alcanza sus máximos a la vez que la otra alcanza sus mínimos). La relación entre las amplitudes de ambas componentes determina la dirección de la oscilación, que es la dirección de la polarización lineal.
En la figura central, las dos componentes ortogonales tienen exactamente la misma amplitud y están desfasadas exactamente 90º. En este caso, una componente se anula cuando la otra componente alcanza su amplitud máxima o mínima. Existen dos relaciones posibles que satisfacen esta exigencia, de forma que la componente x puede estar 90º adelantada o retrasada respecto a la componente Y. El sentido (horario o antihorario) en el que gira el campo eléctrico depende de cuál de estas dos relaciones se dé. En este caso especial, la trayectoria trazada en el plano por la punta del vector de campo eléctrico tiene la forma de una circunferencia, por lo que en este caso se habla de polarización circular.
En la tercera figura, se representa la polarización elíptica. Este tipo de polarización corresponde a cualquier otro caso diferente a los anteriores, es decir, las dos componentes tienen distintas amplitudes y el ángulo de desfase entre ellas es diferente a 0º y a 180º (no están en fase ni en contrafase).

Obtención de luz polarizada

A continuación se explicarán brevemente algunos de los procedimientos experimentales que permiten la obtención de luz polarizada a partir de una emisión de luz natural. Para obtener luz polarizada linealmente se hace que el vector eléctrico vibre en un único plano (plano de polarización) de los que contienen la dirección de propagación.
Existen varios métodos para obtener luz polarizada: absorción selectiva, por reflexión, refracción y por difusión.

Polarización por absorción selectiva


Algunos materiales absorben selectivamente una de las componentes transversales del campo eléctrico de una onda. Esta propiedad se denomina dicroísmo. La luz experimenta una absorción en ciertos estados de polarización. El término dicroísmo proviene de las observaciones realizadas en épocas muy tempranas de la teoría óptica sobre ciertos cristales, tales como la turmalina. En estos cristales, el efecto del dicroísmo varía en gran medida con la longitud de onda de la luz, haciendo que aparezcan diferentes colores asociados a la visión de diferentes colores con diferentes planos de polarización. Este efecto es también denominado pleocroísmo, y la técnica se emplea en mineralogía para identificar los diferentes minerales. En algunos materiales, tales como la herapatita (sulfato de iodoquinina) o las capas Polaroid, el efecto no es tan fuertemente dependiente de la longitud de onda, y ésta es la razón por la que el término dicroico se emplea muy poco.
El dicroísmo ocurre también como fenómeno óptico en los cristales líquidos debido en parte a la anisotropía óptica que presentan las estructuras moleculares de estos materiales. A este efecto se le denominó posteriormente "efecto huésped-invitado" (guest-host effect en inglés).

Polarización por reflexión

Al reflejarse un haz de luz no polarizado sobre una superficie, la luz reflejada sufre una polarización parcial de forma que el componente del campo eléctrico perpendicular al plano de incidencia (plano que contiene la dirección del rayo de incidencia y el vector normal a la superficie de incidencia) tiene mayor amplitud que el componente contenido en el plano de incidencia.
Cuando la luz incide sobre una superficie no absorbente con un determinado ángulo, el componente del campo eléctrico paralelo al plano de incidencia no es reflejado. Este ángulo, conocido como ángulo de Brewster, en honor del físico británico David Brewster, se alcanza cuando el rayo reflejado es perpendicular al rayo refractado. La tangente del ángulo de Brewster es igual a la relación entre los índices de refracción del segundo y el primer medio.

Polarización por birrefringencia


Birrefringencia en un cristal de calcita.
La birrefringencia o doble refracción es una propiedad de ciertos cuerpos, como el espato de Islandia, de desdoblar un rayo de luzincidente en dos rayos linealmente polarizados de manera perpendicular entre sí como si el material tuviera dos índices de refracción distintos.
La primera de las dos direcciones sigue las leyes normales de la refracción y se llama rayo ordinario; la otra tiene una velocidad y un índice de refracción variables y se llama rayo extraordinario. Este fenómeno sólo puede ocurrir si la estructura del material es anisótropa. Si el material tiene un solo eje de anisotropía, (es decir es uniaxial), la birrefringencia puede formalizarse asignando dos índices de refracción diferentes al material para las distintas polarizaciones.
La birrefringencia está cuantificada por la relación:
\Delta n=n_e-n_o \,
donde no y ne son los índices de refracción para las polarizaciones perpendicular (rayo ordinario) y paralela al eje de anisotropía (rayo extraordinario), respectivamente.
La birrefringencia puede también aparecer en materiales magnéticos, pero variaciones sustanciales en la permeabilidad magnética de materiales son raras a las frecuencias ópticas. El papel de celofán es un material birrefringente común.

Efectos de la polarización en la vida diaria

La luz reflejada sobre materiales brillantes transparentes es parcial o totalmente polarizada, excepto cuando la luz incide en dirección normal (perpendicular) a la superficie reflectante. Un filtro polarizador, como el de unas gafas de sol polarizada, puede utilizarse para observar este fenómeno haciendo girar el filtro y mirando a través de él. Para determinados ángulos, se atenuará la luz o será totalmente bloqueada. Los filtros polarizadores bloquean el paso de luz polarizada a 90º respecto al plano polarizador del filtro. Si dos filtros polarizadores (polarizador y analizador) se colocan uno en frente del otro de forma que ambos sean atravesados por un haz de luz que no estaba polarizado previamente, la intensidad luminosa del haz que sale del segundo filtro será proporcional al coseno del ángulo que forman los planos polarizadores de ambos filtros entre sí. Si ese ángulo es de 90º, el paso de la luz es bloqueado.

La polarización por dispersión puede observarse cuando la luz pasa por la atmósfera de la Tierra. La dispersión de la luz produce el resplandor y el color cuando el cielo está despejado. Esta polarización parcial de la luz dispersada puede ser usada para oscurecer el cielo en fotografías, aumentando el contraste. Este efecto es fácil de observar durante la puesta de sol, cuando el horizonte forma un ángulo de 90° respecto a la dirección del observador hacia el sol. Otro efecto fácilmente observado es la reducción drástica del resplandor de las imágenes del cielo reflejadas sobre superficies horizontales, que es la razón principal por la que a menudo se usan filtros polarizadores en gafas de sol. También puede verse con frecuencia que un filtro polarizador muestre algunos arcoíris a causa de la dependencia del color de los efectos de la birrefringencia, por ejemplo en las ventanas de cristal laminado de los automóviles o en artículos hechos de plástico transparente. El papel desempeñado por la polarización en una pantalla LCD puede verse con unas gafas de cristal polarizado, pudiendo reducir el contraste incluso hasta a hacer la visión de la pantalla ilegible.

Efecto de un cristal templado sobre la luz polarizada analizado con un filtro polarizador.
En la fotografía de la derecha se ve el parabrisas de un coche a través de la luneta trasera de otro coche situado delante y un filtro polarizador (como el de unas gafas de cristal polarizado). La luz del cielo se refleja en el parabrisas del coche de atrás, haciendo que se polarice la luz reflejada, principalmente con un plano de polarización horizontal. La luneta trasera del coche delantero está fabricada convidrio templado. Debida al tratamiento térmico del templado en el cristal de la luneta del coche situado delante, el cristal tiene una tensión residual que hace que cambie el ángulo del plano de polarización de la luz que pasa por él. Si no estuviera la luneta trasera, las gafas de sol bloquearían toda la luz polarizada horizontalmente que es reflejada por la ventana del otro coche. Sin embargo, la tensión en la luneta trasera cambia un poco el ángulo del plano de polarización de la luz, con una componente vertical y otra horizontal. La componente vertical no es bloqueada por los cristales de las gafas, percibiéndose la luz reflejada en el parabrisas del coche de atrás.

No hay comentarios:

Publicar un comentario